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Abstract Activity recognition is becoming an important re-
search area, and finding its way to many application domains
ranging from daily life services to industrial zones. Sensing
hardware and learning algorithms are two important com-
ponents in activity recognition. For sensing devices, we pre-
fer to use accelerometers due to low cost and low power
requirement. For learning algorithms, we propose a novel
implementation of the semi-Markov Conditional Random
Fields (semi-CRF) introduced by Sarawagi and Cohen. Our
implementation not only outperforms the original method in
terms of computation complexity (at least 10 times faster
in our experiments) but also is able to capture the interde-
pendency among labels, which was not possible in the pre-
viously proposed model. Our results indicate that the pro-
posed approach works well even for complicated activities
like eating and driving a car. The average precision and re-
call are 88.47% and 86.68%, respectively, which are higher
than results obtained by using other methods such as Hidden
Markov Model (HMM) or Topic Model (TM).

Keywords Activity recognition · Wearable sensors ·
Accelerometer · Hidden Markov Model (HMM) ·
Conditional Random Fields (CRF)

1 Introduction

Nowadays, activity recognition is an increasingly important
research area. The modern life style tends to involve in more
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sedentary jobs, while there are growing evidences in the re-
lationship between common health problems such as dia-
betes, cardiovascular, osteoporosis and the level of physical
activity [24]. Therefore, simple monitoring will not protect
anybody from any disease but may help to assess and then
alter the life style, which in turn could result in health ben-
efits. In addition, activity recognition has been considered
to be a potential factor in improving convenience as well as
productivity at the work place; for example, in smart hospi-
tals [6, 18], in aircraft maintenance [10], or in a workshop
[13]. Also, such activity recognition systems can be used
to predict abnormal behaviors such as falling down [14] for
emergency response in health-care systems.

There are various approaches using video [4] and de-
ployed sensors [21], many researchers, however, have used
accelerometers in their research work due to their low cost,
low power requirement, portability, and versatility charac-
teristics. Therefore, we also use accelerometer-based input
for our activity recognition system. With respect to recogni-
tion methods, sliding window approach is commonly used
in accelerometer-based activity recognition [1, 13, 17, 20].
However, in most cases, a sliding window cannot cover one
complete activity, since the duration of different activities
usually varies significantly and the start time of an activity
in a continuous stream is unknown in advance. Thus, the
sliding window approach may produce fragments of activ-
ities making it difficult to obtain comprehensive models to
satisfy the performance requirements of a continuous activ-
ity recognition system. One feasible solution for this prob-
lem is to take into account the duration of activities so that
some short-length fragments can be eliminated. In addition
to the problem associated with sliding windows, the inter-
dependency among activities is another issue, which should
be considered when detecting activities in a continuous data
stream.
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Nevertheless, to the best of our knowledge, none of the
existing activity recognition models is able to handle all
the afore mentioned problems, especially, for large-scale
activity recognition systems. Therefore, in this study, we
propose a novel method for activity recognition, which is
based on the work from Sarawagi and Cohen [19], to model
the duration as well as the interdependency of activities.
Furthermore, we introduce our clever caching algorithm to
overcome the high computation complexity of the original
work [19].

2 Paper contribution and outline

Our contributions in this work are three folds. First, we pro-
pose a novel implementation of semi-Markov Conditional
Random Fields (semi-CRF) that is superior to one proposed
in [19]. Second, we propose an efficient algorithm for pa-
rameter estimation, which runs much faster than the origi-
nal training algorithm in [19]. Third, we apply the proposed
semi-CRF to accelerometer-based activity recognition with
a large-scale dataset.

The rest of this paper is organized as follows. We briefly
survey related work and their results in Sect. 3. Section 4 de-
scribes the background of our work which includes the stan-
dard CRF [9, 23] and an existing implementation of semi-
CRF [19]. We also point out limitations of these models,
which are solved by our proposed approach as described in
Sect. 5. Section 6 shows how the proposed semi-CRF model
can be applied to accelerometer-based activity recognition.
In Sect. 7, we discuss in detail our experiments and results
to show our improvements. We conclude the paper and out-
line future work in Sect. 8. Finally, we present details about
our algorithms in the appendix section.

3 Related work

So far, many algorithms have been proposed for accelerome-
ter-based activity recognition. Decision tree, support vec-
tor machine and some other kinds of classification meth-
ods were evaluated in [1, 17]. To make use of the sequential
structure of activities, Hidden Markov Model (HMM) was
used in [20]. Recently, Conditional Random Fields model
(CRF) was introduced as a much better approach com-
pared to HMM in sequential modeling [9]. Thus, some re-
searchers have successfully applied CRF to activity recog-
nition [12, 23].

A limitation of both conventional HMM and first-order
CRF is the Markovian property, which assumes that the cur-
rent state depends only on the previous state. Because of
this assumption, the labels of two adjacent states must be
supposed to occur successively in the observation sequence.

Unfortunately, the presumption is not always satisfied in re-
ality. For example, in the activity recognition problem, two
expected activities (activities that we want to recognize) are
often separated by irrelevant activities (activities that we do
not intend to detect). Furthermore, constant self-transition
probabilities cause the distribution of state’s duration to be
geometric [16] which is inappropriate to the real activity du-
ration model.

In [19], Sarawagi and Cohen have shown that semi-CRF
is capable of using an explicit duration model. It, however,
increases the computation complexity of forward and back-
ward algorithms by D times from O(T M2) to O(T M2D),
where T ,M,D are the length of the input sequence, the
number of possible label values, and the maximum dura-
tion length, respectively. In [5], the proposed semi-CRF
model requires a complexity of O(T M2D) for estimating
each gradient. If we have N parameters to be optimized,
the computation load will be O(NT M2D), which is very
high. Truyen et al. [22] introduced a more complicated
model, called Hierarchical Semi-Markov Conditional Ran-
dom Fields (HSCRF) and demonstrated that HSCRF could
be converted to semi-CRF as a special case. Nevertheless,
their conversion did not show any improvement in the com-
plexity required for the optimization of the model’s parame-
ters. In [15], the authors proposed a method to decrease the
computational cost of semi-CRF. They, however, utilized a
Bayes filter to eliminate some sequences from the compu-
tation. The approach, therefore, did not keep the originality
of the problems. In short, semi-CRF model is a potential so-
lution for modeling sequential data like activity data. How-
ever, the current training algorithms for semi-CRF require
high complexity, making the model impractical in large-
scale systems. Furthermore, the semi-CRF model, proposed
in [19], is still not able to solve the long-range transition dif-
ficulty. The authors in [11] used a high order CRF model to
capture long-range transitions in case of predefined transi-
tion order. However, if the order of transition is not known
exactly, their method cannot be used. It also should be noted
that not many research contributions are made in scalable
activity recognition [7].

In this study, we propose to overcome the above limita-
tions of the existing work by introducing our novel semi-
CRF to model both the duration and the interdependency of
activities. Additionally, we develop a fast training algorithm
for our model making it suitable for scalable activity recog-
nition applications.

4 Background

In this section, we briefly review the theory of Conditional
Random Fields [9] and its extension [19]. We also point out
the limitations of the existing work at the end of this section.
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Fig. 1 The graphical structure of a linear-chain Conditional Random
Fields model

4.1 Conditional random fields

In conventional CRF [9], the input sequence X and the cor-
responding label sequence Y of length T are given in the
form

X = {x1, x2, . . . , xT }, (1)

Y = {y1, y2, . . . , yT }. (2)

In this work, we consider only linear chain CRF as depicted
in Fig. 1. The likelihood of the labeled data is calculated as

P(Y |X) =
∏T

t=1 Ψ (yt−1, yt ,X)

ZX

, (3)

Ψ (yt−1, yt ,X) = eWT F(yt−1,yt ,X), (4)

ZX =
∑

Y ′

T∏

t=1

Ψ (y′
t−1, y

′
t ,X), (5)

where F is a column vector of feature functions, W is a
column vector of model parameters, Ψ is called potential
function. ZX , the normalization factor, is computed by using
forward/backward variables

αt (yt ) =
∑

yt−1

Ψ (yt−1, yt ,X)αt−1(yt−1), (6)

ZX =
∑

yT

αT (yT ). (7)

Model parameters are estimated so that P(Y |X) is max-
imized, or equivalently, L(Y |X) = log(P (Y |X)) is maxi-
mized. Since, solving dL

dwi
= 0, i = 1,2,3, . . . ,N , is in-

tractable, numerical methods such as stochastic gradient
ascent method are applied to optimize the concave func-
tion L(Y |X).

4.2 Semi-Markov conditional random fields

Since the conventional CRF is limited to the Markovian as-
sumption that the label yt at time t depends only on the pre-
vious label yt−1, it is not able to capture the duration dis-
tribution as well as the interdependency of labels. There-
fore, semi-Markov model is proposed to handle these is-
sues. In [19], Sarawagi and Cohen described a method for

learning and inferring with semi-CRF. The authors include
in each state a label, a beginning time and an ending time.
Thus, a new state is defined as

si = (y, b, e) i = 1,2, . . . ,P , (8)

where P is the length of the sequence S = s1, . . . , sP ,
which is constructed from input labels Y = (y1, y2, . . . , yT ).
y, b, and e are label, beginning time, and ending time of
the state si , respectively. For example, if we have Y =
(1,1,2,2,2,3,4,4) then S = {(1,1,2), (2,3,5), (3,6,6),

(4,7,8)}. Originally, the beginning and ending time must
satisfy the following constraints.

si .b ≤ si .e i = 1,2, . . . ,P , (9)

si .e + 1 = si+1.b i = 1,2, . . . ,P − 1, (10)

s1.b = 1, (11)

sP .e = T . (12)

Now, instead of computing the likelihood of Y given X, the
likelihood of S given X is estimated by

P(S|X) =
∏P

i=1 Ψ (si−1, si ,X)

ZX

, (13)

ZX =
∑

S′

P ′
∏

i=1

Ψ (s′
i−1, s

′
i ,X), (14)

where Ψ (si−1, si ,X) encodes the potential of the transition
from si−1 to si . In the following equations, we suppose that
any function Ψ (si−1, si ,X) can be rewritten in the form
Ψ (si−1.y, si .y,X, si .b, si .e). For example, with the se-
quence S above, we can rewrite Ψ (s1, s2,X) as
Ψ (1,2,X,3,5).

Ψ (si−1, si ,X) = eWT F(si−1,si ,X), (15)

where W = [w1,w2, . . . ,wN ]T is a column vector of model
parameters,

F(si−1, si ,X) =

⎡

⎢
⎢
⎣

f 1(si−1, si ,X)

f 2(si−1, si ,X)

· · ·
f N(si−1, si ,X)

⎤

⎥
⎥
⎦

is a column vector of feature functions. In (13) and (14), we
can consider the product of potential functions Ψ over all
transitions of a sequence as the potential of the sequence.
Thus, we can rewrite (13) in the form

P(S|X) = Pol(S)
∑

S′ Pol(S′)
, (16)
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where

Pol(S) =
P∏

i=1

Ψ (si−1, si ,X) (17)

is the potential of the sequence S = s1, s2, . . . , sP . The for-
ward algorithm and parameter estimation are implemented
based on the following equations [19]

α(t, y) =
D∑

d=1

∑

y′
α(t − d, y′)Ψ (y′, y,X, t − d, t)

t = 1,2, . . . , T , (18)

ZX =
∑

y

α(T , y), (19)

dZX

dwk

=
∑

y

ηk(T , y), (20)

ηk(t, y) =
D∑

d=1

∑

y′

((
ηk(t − d, y′)

+ α(t − d, y′)f k(y′, y,X, t − d, t)
)

× Ψ (y′, y,X, t − d, t)
)
, (21)

for t = 1,2, . . . , T and k = 1,2, . . . ,N . Where N is the
number of model’s parameters, D is the maximum duration
of a label.

Based on equations from (13) to (21), the derivative of
log likelihood of S given X is calculated as

d

dwk

log
(
P(S|X)

) =
P∑

i=1

f k(si−1, si ,X)

−
∑

y ηk(T , y)
∑

y α(T , y)
. (22)

Although, the semi-CRF model proposed in [19] is able
to utilize an explicit duration model, it is still not able to
capture long-range transitions among labels because of the
equality in (10). For example, given a sequence of activity
labels Y = {Eating, Eating, IA, IA, Cleaning, Cleaning, IA,
IA, IA}, where “IA” stands for “Irrelevant Activity”. Then,
the semi-Markov sequence is S = {(Eating, 1, 2), (IA, 3, 4),
(Cleaning, 5, 6), (IA, 7, 9)}. Clearly, herein, we can utilize
the transitions from “Eating” to “IA” or from “IA” to “Clean-
ing”, but we are not able to take advantage of the transition
from “Eating” to “Cleaning”. Hereafter, in our equations we
will use symbols y and “IA” to represent labels of expected
and irrelevant activities, respectively. In the next section, we
tackle the difficulty by relaxing the constraints in (10), (11),
and (12) so that our model can skip irrelevant activities and
directly model the transitions between two expected activi-
ties.

5 Semi-CRF with discontiguous states

In this section, we present details of our proposed model,
which is applied to accelerometer-based activity recogni-
tion, based on the semi-CRF model introduced in [19].

To handle the problem of contiguous state labels, we
use inequalities instead of the equalities in (10), (11), and
(12), so we have 0 < si.b ≤ si .e < si+1.b ≤ si+1.e ≤ T

i = 1,2, . . . ,P − 1. For example, given a sequence of ac-
tivity labels Y = { Eating, Eating, IA, IA, Cleaning, Clean-
ing, IA, IA, IA}, the corresponding semi-Markov sequence
is S9 = {(Eating, 1, 2), (Cleaning, 5, 6)}. The labels, located
in the time slots which are not occupied by any expected
activities, are “IA” by default. The superscript 9 represents
the length of the original sequence Y of S9. Obviously, by
this way we are able to utilize the transition from “Eating”
to “Cleaning” directly although they are separated by “IA”.

In our approach, we suppose that the duration potential,
the transition potential, and the observation potential are in-
dependent of each other. Thus, we can rewrite the potential
function as below

Ψ (si−1, si ,X) =
⎛

⎜
⎝

eQT r (si−1,si ,X)×
eQD(si−1,si ,X)×
eQO(si−1,si ,X)

⎞

⎟
⎠ . (23)

The weighted transition potential function is given by

QT r(si−1, si ,X)

=
∑

y′,y
wT r(y′, y)δ(si−1.y = y′, si .y = y), (24)

where wT r(y′, y) is the weight of transition from y′ to y and
δ is given by

δ(A) =
{

1 if A is true,
0 if A is false.

(25)

The weighted duration potential function of an expected ac-
tivity is calculated as

QD(si−1, si ,X)

=
∑

y,d

GD(y, d)δ(si .y = y, d = si .e − si .b + 1)

=
∑

y,d

wD(y)
(d − my)

2

2σ 2
y

δ(si .y = y, d = si .e − si .b + 1),

(26)

where wD(y) is the duration weight of y. my and σy are the
empirical average and standard deviation of state y’s dura-
tion, respectively, which can be easily extracted from train-
ing data. Figure 2 depicts the shape of the corresponding
potential function eGD(y,d) with three different values of y.
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Fig. 2 (Color online) Duration potential with different values of mean
and standard deviation. If a detected segment has a length of, for ex-
ample 6, then it most likely belongs to the same class with the label,
whose duration potential is presented in the green

Clearly, the most likely duration (at the center of the bell)
has the highest potential value. Since irrelevant activities
can have an arbitrary length, we do not model the duration
of such activities because modeling will increase the possi-
ble maximum duration length, D, which may result in high
complexity.

Note that in (26) we assume that the duration of an activ-
ity has a Gaussian-like distribution. Although the assump-
tion is not always true, it is reasonable to assume that since
most activities often last around a constant amount of time.

Next, we define the weighted observation potential func-
tion as

QO(si−1, si ,X)

=
∑

y,t1,t2

(
Gy(y, t1, t2)δ(si .y = y, si .b = t1, si .e = t2)

+ GIA(IA, t1, t2)δ(si−1.e + 1 = t1, si .b − 1 = t2)
)
,

(27)

where

Gy(y, t1, t2) =
t2∑

t=t1

∑

o

wO(y, o)δ(xt = o), (28)

GIA(IA, t1, t2) =
t2∑

t=t1

∑

o

wO(IA, o)δ(xt = o), (29)

where wO(y, o) and wO(IA, o) in that order are the weights
of the observation given that input symbol o is observed in
state with label y and IA. For convenience in the presen-
tation of the following equations, we denote G(y, t1, t2) =
Gy(y, t1, t2) + GD(y, t2 − t1 + 1) as a combined potential
function.

Our approach is similar to that in [19], but we allow dis-
continuity in the time of state by using si+1.b > si .e instead

Fig. 3 Training Data Clustering

Fig. 4 Training/Testing semi-CRF with discrete input sequences

of si+1.b = si .e + 1 as in [19]. The inequality enables our
model to skip irrelevant activities and to directly model the
transition between two expected activities. For the training
and inference algorithms, we propose novel implementa-
tions of the forward, backward algorithms, gradient calcu-
lating algorithm and Viterbi algorithm. Details of our algo-
rithms are presented in the appendix section at the end of
this paper.

6 The proposed activity recognition framework

In this section, we present how the proposed semi-CRF
model can be applied to accelerometer-based activity recog-
nition.

In our system, discrete values were used as the input
of the semi-CRF. Therefore, we first quantized the con-
tinuous input signal from the accelerometers using Linde-
Buzo-Gray (LBG) algorithm. Figure 3 illustrates a block
diagram of the clustering module. In this module, we em-
ployed overlapped sliding windows to chop the signal into
equal-length frames. After windowing, feature vectors were
extracted from signal frames and fed into a LBG clustering
function to construct a codebook. Then, every input fea-
ture vector was quantized to an integer value, which was
the index of the nearest codebook vector. The output se-
quence of discrete values was used for training or testing
the semi-CRF model, as it is shown in Fig. 4. We conducted
experiments to analyze the effect of different parameter’s
values on the achieved results. The percentage of the over-
lap between two contiguous windows, the length of each
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Fig. 5 Achieved precision and recall with different parameter’s values

window, and the codebook’s size were chosen based on our
experiments. Figure 5 shows the results obtained with dif-
ferent values of these parameters. From the results depicted
in Fig. 5, we decided that the overlap portion was 50%, the
window’s length was 512 samples, and the number of code-
book vectors was 64.

7 Evaluation

In this section, we first show that our proposed algorithm
achieves a remarkable improvement in terms of computa-
tion complexity compared to the previous work. Then, we
present the recognition results with an available large-scale
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Fig. 6 Average time needed for
computing all the gradients.
Herein, the number of labels
(M) is 4, the maximum duration
(D) is 16, the codebook’s size
(V ) is 128, the length of the
input sequence (T ) changes
from 32 to 1024. Therefore, the
number of gradients is
M + M2 + MV = 532

dataset. From the achieved results, we show that the pro-
posed method not only speeds up the calculation signifi-
cantly, but also produces much better accuracy in recog-
nition. All the experiments were implemented in C++ on
a computer with Intel dual core 1.83 GHz processor and
512 MB RAM.

7.1 Complexity analysis

In the algorithm proposed in [19], the estimation of (22) re-
quires that α(t, y) and ηk(t, y) are pre-calculated for all pos-
sible values of t and y. Each of them needs a complexity of
O(MD) as can be seen in (18) and (21). Therefore, the com-
plexity per gradient of (22) is proportional to O(TM2D).
Hence, the estimation of gradients for all N model’s para-
meters takes O(NTM2D).

In our solution, gradients are computed by using (52),
(60), (62), and (63). It is obvious that if α, γ , λ, β , θ , ζ ,
and ν are cached, then estimating the above equations re-
quires a maximum complexity of O(TD). Hence, for opti-
mizing N parameters, our algorithm requires only O(NTD)

to completely calculate all gradients. Nevertheless, we need
to take into account the extra time of estimating the cached
variables. As shown in the pseudo-code for the forward and
backward algorithm, α, γ , λ, β , η, and ζ can be computed
with O(2TM(M + D)). Meanwhile, from (59) and (68) we
see that θ and ν take O(TMD) and O(TM2), respectively.
Totally caching these variables requires a complexity of O(3
TM(M + D)).

It can be seen that our improvement completely comes
from the caching mechanism. In our gradient (52), (60), (62)
and (63) we utilize different partitioning methods, which
take into account the characteristics of the gradients. For
example, in (52) we partition the set of all length-T label

sequences (ST ) into subsets (
⋃

t Λ
y′
t ⊕ Ω

y

t+1) based on the
occurrence time of a transition from y′ to y. Meanwhile in
[19] a fixed partitioning method, where ST was always di-
vided into subsets based on the length of the last segment,
was used regardless of different characteristics of the gradi-
ents. This is the reason why our algorithm achieves much
more efficient caching results.

Herein, we take a numerical example to compare
O(NTM2D), which is the estimated complexity in [19],
to O(3TM(M + D)) + O(NTD), our algorithm complex-
ity. Suppose that we need to compute N = 1000 gradients
of an input sequence, which has the length T = 1000, the
maximum duration D = 100, the number of labels M = 8,
then the former is about 64 × 109, the latter is about 109.
In addition, Fig. 6 illustrates another comparison of the two
complexities with N = 532, M = 4, D = 16 and T changes
from 32 to 1024. Both algorithms were evaluated on the
same computer with the same dataset. The amount of time
which was required by the method proposed by Sarawagi
and Cohen in [19] is marked in blue, time consumed by our
algorithm is marked in red. Obviously, there is a remarkable
improvement in our complexity since our time requirement
is at least 10 times less than the computation time required
by Sarawagi and Cohen’s method.
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Table 1 Low level activities occurring during the routines [8]

Activity Average duration Occurrences Total

Sitting/desk activities 49.41 min 54 3016.0 min

Unlabeled 1.35 min 239 931.3 min

Having dinner 17.62 min 6 125.3 min

Walking freely 2.86 min 38 124.2 min

Driving car 10.37 min 10 120.3 min

Having lunch 10.95 min 7 75.1 min

Discussing at white board 12.80 min 5 62.7 min

Attending a presentation 48.9 min 1 48.9 min

Driving a bike 11.82 min 4 46.3 min

Walking while carrying something 1.43 min 10 23.1 min

Walking 2.71 min 7 23.0 min

Picking up mensa food 3.30 min 7 22.6 min

Sitting/having a coffee 5.56 min 4 21.8 min

Queuing in a line 2.89 min 7 19.8 min

Using the toilet 1.95 min 2 16.7 min

Washing dishes 3.37 min 3 12.8 min

Standing/having a coffee 6.7 min 1 6.7 min

Preparing food 4.6 min 1 4.6 min

Washing hands 0.32 min 3 2.2 min

Running 1.0 min 1 1.0 min

Wiping the whiteboard 0.8 min 1 0.8 min

7.2 Experiments

In our experiments, we used a dataset of long-term activities,
which has been published at http://www.mis.informatik.tu-
darmstadt.de/data. The dataset contains 7 days of continu-
ous data (except the sleeping time), measured by two tri-
axial accelerometers, one on the wrist and the other in the
right pocket. The sensor’s sampling frequency was set to
100 Hz. In the published dataset, the author calculated the
mean value of every 0.4 s window, so the actual sampling
frequency was about 2.5 Hz. In total, it has 34 labeled ac-
tivities, of which a subset of 24 activities occurred during
the routines. Table 1 lists all the annotated activities, which
were grouped by the authors in [8] into 5 daily routines as
seen in Table 2. To compare our method with the existing
methods, which were evaluated in [8] and [2], we kept all
the data settings unchanged.

From our experiment’s results illustrated in Fig. 5, we
chose 50%-overlapped-sliding windows which had a length
of 512 samples (about 3.41 minutes). Within a window,
mean, standard deviation, and mean crossing rate were ex-
tracted from each signal. Then, these values were combined
with the time of frame to form a feature vector. Finally, we
followed leave-one-out cross validation rule to measure the
results of recognition as can be seen in Table 3. Figure 7

Table 2 Daily routines
Routine Occurrences

Dinner 7

Commuting 14

Lunch 7

Office work 14

Unknown (null) >50

demonstrates an example of recognized routines together
with the ground truth.

Our results show a considerable improvement compared
to [2, 8], except dinner routine which has lower precision
and recall than those of [2], with 3 other routines we obtain
better results. Since we utilize similar features (mean, stan-
dard deviation, time) as in the original work, the improve-
ment can be explained as the result of taking into account
the interdependency together with the duration of activities.

Nevertheless, when trying to explain the results obtained
with the dinner routine, we find out that our precision and re-
call are affected by the fragmentation of the routine. As seen
in Table 4, the worst result, decreasing the overall achieve-
ment, is achieved with dinner routine of day 2, which is in-
terrupted by other activities such as walking, and carrying
something. Meanwhile, we still obtain quite good results (on

http://www.mis.informatik.tu-darmstadt.de/data
http://www.mis.informatik.tu-darmstadt.de/data
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Table 3 Recognition result: the first and second column contain the
results which are evaluated by Huynh et al. in [8] using a HMM, and a
TM, respectively, the third column contains the achievement of Ulf

Blanke and Bernt Chiele using boosting techniques [2], our results
are presented in the last column. All the recognition experiments were
evaluated with the same dataset

Baseline (HMM) Huynh et al. Ulf Blanke et al. Our method

Routines Precision/Recall (%) Precision/Recall (%) Precision/Recall (%) Precision/Recall (%)

Dinner 88.60/27.30 56.90/40.20 85.27/90.48 78.43/71.57

Commuting 72.60/31.50 83.50/71.10 81.77/82.36 86.57/86.86

Lunch 84.40/80.70 73.80/70.20 84.56/90.04 91.86/91.57

Office 89.20/91.10 93.40/81.80 98.12/93.63 97.00/96.71

Table 4 Sequence of activities, which occur in the dinner routine. As can be seen, a dinner routine often contains some related activities such as
having dinner, sitting, and washing dishes. However, in day 2 the dinner routine is interrupted by walking and carrying something

Day Sequence of activities Precision (%) Recall (%)

1 Having dinner, sitting 100 100

2 Having dinner, walking, sitting, walking, sitting, carrying something, walking, washing dishes 0 0

3 Having dinner, sitting, washing dishes 60 100

4 Having dinner 100 76

5 Having dinner, washing dishes 95 95

6 Having dinner, sitting 100 45

7 Having dinner, sitting, washing dishes 94 85

Fig. 7 A single day recognized
routines

average 91.00% and 90.34% for precision and recall, respec-
tively) with other days, which are not fragmented.

Table 5 shows an example of transition matrix after train-
ing. It can be seen that the potential of most likely transi-
tions such as “office work–lunch”, “commuting–dinner” or

“lunch–office” is always the highest to encourage the pre-
diction of these events.

In addition to the accuracy, our solution also has a prac-
tical training time. With 72 hours of training data, our algo-
rithm takes about 2 hours to complete parameter estimation
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Table 5 Transition weights
Dinner Commuting Lunch Office

Dinner −9.67 −10.99 −9.34 −8.99

Commuting −2.50 −8.38 −6.80 −4.20

Lunch −7.08 −9.39 −8.23 −6.12

Office −9.60 −9.38 −7.51 −8.38

in a system with Intel dual core 1.83 GHz processor and
512 MB RAM.

In conclusion, our proposed model and algorithm work
well in practice, making the semi-CRF model practical for
large-scale activity recognition.

8 Conclusion

In this paper, we have presented a novel implementation
of semi-Markov Conditional Random Fields and fast algo-
rithms for gradient calculation. The solution not only is able
to make use of the interdependency and the duration of ac-
tivities to increase the accuracy, but also takes a practical
amount of time for parameter estimation. Although the algo-
rithm produced a low accuracy in some particular case, over-
all, we have shown that our approach obtains better results
when compared to others. In this study, we only used activ-
ity recognition as our target application. However, the semi-
CRF model can be extensively applied to other fields such as
natural language processing or gene prediction. Our work,
therefore, may bring a significant contribution not only to
activity recognition, but also to a broader range of research
areas.

For the future work, we plan to extend the proposed al-
gorithms to handle continuous inputs and disparate sensors,
such as audio sensors, gyroscope sensors, and video sensors.
It would require further research to find out the mechanism
of their correlation and the role of each sensor in activity
recognition.
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Appendix A: Forward algorithm

In Appendices A–D we present details of our algorithms in-
cluding forward and backward algorithms, which are used

for computing the normalization factor ZX , gradient esti-
mating algorithms, and Viterbi algorithm for inference.

The forward algorithm is used to compute the normal-
ization factor ZX efficiently by using the dynamic program-
ming method. First, we denote

α(y, t) =
∑

St∈Γ
y
t

Pol(St ) =
∑

St∈Γ
y
t

q∏

i=1

Ψ (si−1, si ,X), (30)

where Γ
y
t = {S = s1, s2, . . . , sq} is a set of all semi-

Markov sequences, which have an original label sequence
(y1, y2, . . . , yt ) with the last expected label is y. Thus, every
St = s1, s2, . . . , sq ∈ Γ

y
t satisfies sq .e ≤ t and sq .y = y.

γ (y, t) =
∑

St∈Λ
y
t

Pol(St ) =
∑

St∈Λ
y
t

q∏

i=1

Ψ (si−1, si ,X), (31)

where Λ
y
t = {S = s1, s2, . . . , sq}, is a set of all semi-

Markov sequences, which have an original label sequence
(y1, y2, . . . , yt−1, yt = y). Therefore, every St = s1, s2, . . . ,

sq ∈ Λ
y
t satisfies sq .e = t and sq .y = y. Let φt represent

a special sequence of length t , which contains only “IA”
labels. From (14) we have

ZX =
∑

ST

Pol(ST )

=
∑

y

∑

ST ∈Γ
y
T

Pol(ST ) + Pol(φT )

=
∑

y

α(y,T ) + eGIA(IA,1,T ). (32)

To compute α(y, t) efficiently, we note that

α(y, t) =
∑

St∈Γ
y
t

Pol(St )

=
∑

St−1∈Γ
y
t−1

Pol(St−1 ⊕ IA) +
∑

St∈Λ
y
t

Pol(St ), (33)

where St−1 ⊕ IA denotes the concatenation of a label “IA”
to the end of the original sequence of St−1. It is easy to see
that

Pol(St−1 ⊕ IA) = Pol(St−1)eGIA(IA,t,t). (34)
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From (33) and (34) we have

α(y, t) = α(y, t − 1)eGIA(IA,t,t) + γ (y, t). (35)

Derive γ (y, t) from (31) we see that

γ (y, t) =
∑

St∈Λ
y
t

Pol(St )

=
D∑

d=1

∑

St−d

Pol(St−d ⊕ (y, t − d + 1, t)), (36)

where St−d ⊕ (y, t − d + 1, t) represents the appending of
d labels y to the original sequence of St−d . In case St−d

contains at least one state, we can assume that (y∗, b, e) is
the last state of St−d , then we have

Pol(St−d ⊕ (y, t − d + 1, t))

= Pol(St−d)ewT r (y∗,y)+G(y,t−d+1,t). (37)

In the other case, St−d = ∅ or its original sequence com-
prises of only “IA”. It is clear that

Pol(St−d ⊕ (y, t − d + 1, t))

= eGIA(IA,1,t−d)eG(y,t−d+1,t). (38)

From (36), (37), (38) we conclude that

γ (y, t) =
D∑

d=1

(∑

y′
α(y′, t − d)ewT r (y′,y)+G(y,t−d+1,t)

+ eGIA(IA,1,t−d)+G(y,t−d+1,t)

)

. (39)

Obviously in (39) only α(y′, t − d) and wT r(y′, y) depend
on y′ therefore by pre-calculating

λ(y, t) =
∑

y′
α(y′, t)ewT r (y′,y), (40)

we have

γ (y, t) =
D∑

d=1

(
λ(y, t − d)eG(y,t−d+1,t)

+ eGIA(IA,1,t−d)+G(y,t−d+1,t)
)
. (41)

Based on (32), (35), (40), and (41) the forward algorithm
can be implemented as in below pseudo-code.

Algorithm 1: Forward algorithm for calculating ZX

Forward
for t = 1 To T do

for y = 1 To StateNum do
α[y][t] = 0
γ [y][t] = 0
λ[y][t] = 0
for d = 1 To D do

if t − d + 1 > 0 then
γ [y][t] + =
λ[y][t − d]eG(y,t−d+1,t)

γ [y][t] + =
eGIA(IA,1,t−d)+G(y,t−d+1,t)

else
Break

if t > 1 then
α[y][t] =
α[y][t − 1]eGIA(IA,t,t) + γ [y][t]

else
α[y][t] = γ [y][t]

for y
′ = 1 To StateNum do

λ[y][t] = λ[y][t] + α[y ′ ][t]ewT r (y
′
,y)

ZX = eGIA(IA,1,T )

for y = 1 To StateNum do
ZX = ZX + α(y,T )

end

Appendix B: Backward algorithm

Similarly to the forward algorithm, let we denote

β(y, t) =
∑

ST −t+1∈Ω
y
t

Pol(ST −t+1)

=
∑

ST −t+1∈Ω
y
t

q∏

i=1

Ψ (si−1, si ,X), (42)

where Ω
y
t = {S = s1, s2, . . . , sq} is a set of all semi-

Markov sequences, which have an original label sequence
(yt , yt+1, . . . , yT ) with the first expected label is y.

η(y, t) =
∑

ST −t+1∈Υ
y
t

Pol(ST −t+1), (43)

where Υ
y
t = {S = s1, s2, . . . , sq} is a set of all semi-Markov

sequences, which have an original label sequence (yt =
y, yt+1, . . . , yT ). Follow similar steps in forward algorithm
we come up with

β(y, t) = β(y, t + 1)eGIA(IA,t,t) + η(y, t), (44)
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Algorithm 2: Backward algorithm for calculating ZX

Backward
for t = T Down To 1 do

for y = 1 To StateNum do
β[y][t] = 0
η[y][t] = 0
ζ [y][t] = 0
for d = 1 To D do

if t + d − 1 ≤ T then
η[y][t] + =
ζ [y][t + d]eG(y,t,t+d−1)

η[y][t] + =
eG(y,t,t+d−1)+GIA(IA,t+d,T )

else
Break

if t < T then
β[y][t] =
β[y][t + 1]eGIA(IA,t,t) + η[y][t]

else
β[y][t] = η[y][t]

for y
′ = 1 To StateNum do

ζ [y][t] = ζ [y][t] + β[y ′ ][t]ewT r (y,y
′
)

ZX = eGIA(IA,1,T )

for y = 1 To StateNum do
ZX = ZX + β(y,1)

end

η(y, t) =
D∑

d=1

(∑

y′
β(y′, t + d)ewT r (y,y′)+G(y,t,t+d−1)

+ eG(y,t,t+d−1)+GIA(IA,t+d,T )

)

=
D∑

d=1

(ζ(y, t + d)eG(y,t,t+d−1)

+ eG(y,t,t+d−1)+GIA(IA,t+d,T )), (45)

where

ζ(y, t) =
∑

y′
β(y′, t)ewT r (y,y′). (46)

The following pseudo-code illustrates how the backward al-
gorithm can be implemented.

Appendix C: Gradient estimation

The goal of parameter estimation is to choose appropriate
values for the model weights (wT r , wD , and wO ) so that
the likelihood of the observation data P(S|X) is maximized.

Take the logarithm form of P(S|X) we have

L(S|X) =
P∑

i=1

(QT r(si−1, si ,X) + QD(si−1, si ,X)

+ QO(si−1, si ,X)) − log(ZX). (47)

To find the optimal parameter values w∗ we have to solve
dL
dw∗ = 0. From (47) we know that

dL

dw∗ =
P∑

i=1

dQ∗(si−1, si ,X)

dw∗ − 1

ZX

dZX

dw∗ . (48)

Herein we use Q∗ and w∗ to refer to any kind of the poten-
tial function and weight (∗ can be D, Tr, or O). Computing
the first term of the right side in (48) is trivial, ZX is cal-
culated by using forward or backward variables. Therefore,
here we mainly focus on evaluating dZX

dw∗ for different kind
of weights. From (14) and (23) we have

dZX

dw∗ =
∑

ST

((
P∑

i=1

dQ∗(si−1, si ,X)

dw∗

)
P∏

i=1

Ψ (si−1, si ,X)

)

.

(49)

C.1 Gradient of the transition weight

Since

dQT r(si−1, si ,X)

dwT r(y′, y)
= δ(si−1.y = y′, si .y = y), (50)

it brings about that

dZX

dwT r(y′, y)
=

T∑

t=1

∑

ST r∈Λ
y′
t ⊕Ω

y
t+1

P∏

i=1

ψ(si−1, si ,X), (51)

where each ST = s1, s2, . . . , sP ∈ Λ
y′
t ⊕Ω

y

t+1 can be defined

as the concatenation of two sub sequences St
prev ∈ Λ

y′
t and

ST −t
post ∈ Ω

y

t+1. Therefore

dZX

dwT r(y′, y)
=

T∑

t=1

γ (y′, t)β(y, t + 1)ewT r (y′,y). (52)

C.2 Gradient of the duration weight

From the definition of the duration potential function, it is
obvious that

dQD(si, si−1,X)

dwD(y)

=
∑

y,d

δ(si .y = y, si .e − si .b + 1 = d)
(d − my)

2

2σ 2
y

. (53)
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As a result

dZX

dwD(y)
=

D∑

d=1

T∑

t=1

(d − my)
2

2σ 2
y

∑

ST ∈ χ
d,t
y

P∏

i=1

ψ(si−1, si ,X),

(54)

where χ
d,t
y = {S = s1, . . . , sP } is a set of all semi-Markov

sequences whose original sequences contain d continuous
labels y from time t . Let

θ(y, t, d) =
∑

ST ∈χ
d,t
y

P∏

i=1

ψ(si−1, si ,X). (55)

Obviously, each ST ∈ χ
d,t
y can be represented as a concate-

nation

ST = St−1
prev ⊕ (y, t, t + d − 1) ⊕ ST −t−d+1

post , (56)

where

St−1
prev ∈

⋃

y′
Γ

y′
t−1 ∪ {φt−1}, (57)

and

ST −t−d+1
post ∈

⋃

y∗
Ω

y∗
t+d ∪ {φT −t−d+1}. (58)

Equations (55), (56), (57), and (58) imply that

θ(y, t, d) = (λ(y, t − 1)ζ(y, t + d)eG(y,t,t+d−1)

+ ζ(y, t + d)eGIA(IA,1,t−1)+G(y,t,t+d−1)

+ λ(y, t − 1)eG(y,t,t+d−1)+GIA(IA,t+d,T )

+ eGIA(IA,1,t−1)+G(y,t,t+d−1)+GIA(IA,t+d,T )).

(59)

Using θ(y, t, d) the gradient is calculated as

dZX

dwD(y)
=

D∑

d=1

T∑

t=1

(d − my)
2

2σ 2
y

θ(y, t, d). (60)

C.3 Gradient of the observation weight

To estimate the gradient of the observation weight, we con-
sider two cases. In the first case, we handle the observation
weights of expected labels. From (27), (28), and (29) we can
assert that

dQO(si−1, si ,X)

dwO(y, o)
=

si .e∑

k=si .b

δ(si .y = y, xk = o). (61)

Combining (61) and the definition of θ in (55) leads to

dZX

dwO(y, o)
=

∑

k,t,d
k∈[t,t+d−1]

θ(y, t, d)δ(xk = o). (62)

Similarly, we come up with estimation equations in case of
irrelevant labels

dZX

dwO(IA, o)
=

T∑

t=1

ν(t)δ(xt = o), (63)

where

ν(t) =
∑

ST

P∏

i=1

ψ(si−1, si , x), (64)

sequence ST = s1, s2, . . . , sP does not contain any expected
activities at time t . So, ST can be decomposed as

ST = St−1
prev ⊕ IA ⊕ ST −t

post , (65)

where

St−1
prev ∈

⋃

y′
Γ

y′
t−1 ∪ {φt−1}, (66)

and

ST −t
post ∈

⋃

y

Ω
y

t+1 ∪ {φT −t }. (67)

Finally we have

ν(t) =
(∑

y′

∑

y

α(y′, t − 1)β(y, t + 1)ewT r (y′,y)+GIA(IA,t,t)

+ α(y′, t − 1)eGIA(IA,t,T ) + β(y, t + 1)eGIA(IA,1,t)

+ eGIA(IA,1,T )

)

. (68)

After computing the derivatives, many convex optimization
techniques can be applied [3]. In our solution, we applied
a simple stochastic gradient ascent method to finding the
optimal result. To avoid over-fitting, we use L1 regularizer
which is − 1

2WT W . Therefore, the actual target function is

L(S|X) =
P∑

i=1

(
QT r(si−1, si ,X) + QD(si−1, si ,X)

+ QO(si−1, si ,X)
)

− log(ZX) − ε
1

2
WT W, (69)

where ε is a smoothing constant, which is manually esti-
mated.
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Appendix D: Inference using Viterbi algorithm

Inference in our semi-CRF is done by using Viterbi al-
gorithm with a complexity of O(TM2D). Our target is to
find the best matched sequence Y given an input X so that
P(Y |X) is maximized. Let we denote

δ(y, t) = max log
(
P(St = s1, s2, . . . , sq |x1, x2, . . . , xt )

)
,

(70)

St = s1, s2, . . . , sq has the last expected activity is y, or
equivalently sq .e ≤ t and sq .y = y.

δ(y, t) = max
d

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = δ(y, t − 1) + GIA(IA, t, t),

B = GIA(IA,1, t − d)

+ G(y, t − d + 1, t),

δ(y′, t − d) + wT r(y′, y)

+ G(y, t − d + 1, t).

(71)

For backtracking we use �State(y, t) and �Duration(y, t) to
store the previous trace of δ(y, t) as following

�State(y, t) =
⎧
⎨

⎩

y if δ(y, t) = A,
IA if δ(y, t) = B,
y′ otherwise,

(72)

Algorithm 3: Viterbi algorithm for tracking the best
matched sequence

Step 1. Initialization
y∗ = argmax δ(y,T )

t = T

y = y∗
i = 1

end
Step 2. Backtracking

while y 	= IA and t > 0 do
while �Duration(y, t) = 0 do

t = t − 1
si .y = y

si .e = t

si .b = t − �Duration(y, t) + 1
i = i + 1
t = t − �Duration(y, t)

y = �State(y, t)

P = i − 1
end
Step 3. Finalization

y1, y2, . . . , yT =
OriginalSequence(sP , sP−1, . . . , s1)

end

�Duration(y, t) =
⎧
⎨

⎩

0 if δ(y, t) = A,
d if δ(y, t) = B,
d otherwise.

(73)

Using δ(y, t), �State(y, t) and �Duration(y, t) we can follow
the below steps to track the optimized path.
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